THE UNIVERSITY OF TORONTO UNDERGRADUATE MATHEMATICS COMPETITION In Memory of Robert Barrington Leigh March 9, 2013

ثبت نشده
چکیده

has at least n+ 1 distinct prime divisors. (b) When a = 3, determine all the positive integers n for which the assertion in (a) is false. 2. ABCD is a square; points U and V are situated on the respective sides BC and CD. Prove that the perimeter of triangle CUV is equal to twice the sidelength of the square if and only if ∠UAV = 45◦. 3. Let f(x) be a convex increasing realvalued function defined on the closed interval [0, 1] for which f(0) = 0 and f(1) = 1. Suppose that 0 < a < 1 and that b = f(a). (a) Prove that f is continuous on (0, 1). (b) Prove that 0 ≤ a− b ≤ 2 ∫ 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE UNIVERSITY OF TORONTO UNDERGRADUATE MATHEMATICS COMPETITION In Memory of Robert Barrington Leigh

3. Let n be a positive integer. A finite sequence {a1, a2, · · · , an} of positive integers ai is said to be tight if and only if 1 ≤ a1 < a2 < · · · < an, all ( n 2 ) differences aj − ai with i < j are distinct, and an is as small as possible. (a) Determine a tight sequence for n = 5. (b) Prove that there is a polynomial p(n) of degree not exceeding 3 such that an ≤ p(n) for every tight sequen...

متن کامل

THE UNIVERSITY OF TORONTO UNDERGRADUATE MATHEMATICS COMPETITION In Memory of Robert Barrington Leigh

1. Determine the supremum and the infimum of (x− 1)x−1xx (x− (1/2))2x−1 for x > 1. 2. Let n and k be integers with n ≥ 0 and k ≥ 1. Let x0, x1, · · ·, xn be n+1 distinct points in R and let y0, y1, · · ·, yn be n + 1 real numbers (not necessarily distinct). Prove that there exists a polynomial p of degree at most n in the coordinates of x with respect to the standard basis for which p(xi) = yi ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013